MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/21

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Mark Scheme		Paper
	IGCSE – May/June 2014			21
1	$x^2 + x [>0]$	M1	expands and rearranges	
	critical values 0 and -1 soi	A1		
	-1 < x < 0	A1	condone space, comma, "and" but not "or" Mark final answer.	
2	$\frac{6}{(1+\sqrt{3})^2} \text{ or } 6 = (a+b\sqrt{3})(1+\sqrt{3})^2$	M1	for dealing with the negative index (condone treating 6 as have negative index at this stage)	
	$\frac{6}{4+2\sqrt{3}}$ or $6 = (a+b\sqrt{3})(4+2\sqrt{3})$	M1	for squaring	
	$\frac{6}{4+2\sqrt{3}} \times \frac{4-2\sqrt{3}}{4-2\sqrt{3}}$ AND attempting to multiply out	M1	for rationalising or for obtaining a pair of simultaneous equations 4a + 6b = 6 and	
	$6 - 3\sqrt{3}$ isw	A1	2a + 4b = 0	
3 (i)		B1 B1	tick marks, for e	ked or implied by example or seen e y intercept omitted
(ii)	x = 1 (only) soi $y = \pm 9 \text{ (only)}$ 0 < k < 9	B1 B1 B1	can be implied b or $k = \pm 9, +9$ of must be strict in condone space, of "or"	r –9 or both; equality in k ;
4	Attempt to find f(4) or f(1) or division to a remainder	M1	condone one err	or
	128 + 16a + 4b + 12 = 0 or better $(16a + 4b = -140)$	A1		
	2 + a + b + 12 = -12 or better $(a + b = -26)$	A1		
	Solves linear equations in <i>a</i> and <i>b</i>	M1		
	a = -3, b = -23	A1	both	

	Page 3			Syllabus	Paper
		IGCSE – May/June 2014		0606	21
5	(i)	$2\left(x-\frac{1}{4}\right)^2 + \frac{47}{8}(5.875)$ isw	B3,2,1,0	one mark for each of <i>p</i> , <i>q</i> , <i>r</i> correct allow correct equivalent values. If B0 , then SC2 for $2\left(x-\frac{1}{4}\right)+\frac{47}{8}$, or SC1 for correct values but incorrect format strict ft <i>their</i> $\frac{47}{8}$ and <i>their</i> $\frac{1}{4}$; each value must be correctly attributed; condone $y = \frac{47}{8}$ for B1 , or $\left(\frac{1}{4}, \frac{47}{8}\right)$ for B1B1	
	(ii)	$\frac{47}{8}$ is min value when $x = \frac{1}{4}$	B1ft + B1ft		
6	(a)	${}^{8}C_{3} \times 3^{3} \times (\pm 2)^{5} \text{ or } 3^{8} \left[{}^{8}C_{3} \left(\pm \frac{2}{3} \right)^{5} \right]$	M1	condone ${}^{8}C_{5}, -2x^{5}$	
		-48384	A1	can be in expans	ion
	(b) (i)	$1 + 12x + 60x^2$	B2,1,0	ignore additional terms. If B allow M1 for 3 correct unsimplific terms	
	(ii)	Coefficient of x correct or correct ft $(12+a)$ soi Coefficient of x^2 correct or correct ft $(60+12a)$ so	B1ft B1ft	ft their $1 + 12x + 60x^2$ ft their $1 + 12x + 60x^2$	
		$1.5 \times their(12 + a) = their(60 + 12a)$ - 4	M1 A1	no x or x^2	
7	(i)	$-\frac{1}{x^2} + \frac{1}{x^{\frac{1}{2}}}$	B1 + B1	or equivalent wit	th negative indices
	(ii)	$-\frac{1}{x^2} + \frac{1}{x^{\frac{1}{2}}}$ $\frac{2}{x^3} - \frac{1}{2x^{\frac{3}{2}}}$	B1ft + B1ft	or equivalent with Strict ft	th negative indices.
	(iii)	Attempting to solve <i>their</i> $\frac{dy}{dx} = 0$	M1	must achieve $x = \dots$ (allow slips)	
		x = 1 y = 3	A1	SC2 for $(1, 3)$ stated, nfww	
		Substitute <i>their</i> $x = 1$ into <i>their</i> $\frac{d^2 y}{dx^2}$; or examines	M1	for using <i>their</i> value from $\frac{dy}{dx} = 0$	
		$\frac{dy}{dx}$ or y on both sides of <i>their</i> $x = 1$			
		Complete and correct determination of nature. If correct, minimum.	A1	must be from correct work	

Page 4	Mark Scheme		Syllabus	Paper		
	IGCSE – May/June 2014			21		
			T			
8 (i)	$2r + r\theta = 30$ giving $\theta = \frac{30 - 2r}{r}$	M1	correct arc formula + (2) <i>r</i> rearranged			
	Substitute <i>their</i> expression for θ into $A = \frac{1}{2}r^2\theta$	M1				
	Correct simplification to $A = 15r - r^2$ AG	A1				
(ii)	15 - 2r = 0	M1	their $\frac{dA}{dr} = 0$			
	<i>r</i> = 7.5 56.25	A1 A1		a 56 25 acon.		
	30.23	AI	56.3 is A0 unless 56.25 seen; if M0 , then SC2 for $A = 56.25$ with no working; or SC1 for $r = 7.5$ with no working			
9 (i)	(3, 5)	B1B1	column vector B0B1			
(ii)	$m_{BD}\left(=\frac{6-4}{1-5}\right)=-\frac{1}{2}$	M1	can be implied by second M1			
	$m_{AC} \left(= -1 \div -\frac{1}{2} \right)$ seen or used	M1				
	y-5=2(x-3) or $y=2x+c, c=-1$ or better	A1				
(iii)	p = 1 $q = 7$ $[A(1, 1) C(4, 7)]Method for finding area numerically$	M1 M1	could be in (ii) e.g.			
			$24 - \left(\frac{1}{2} \times 1 \times 3 + \frac{1}{2} \times 1 \times 3 + \frac{1}{2} \times 4\right)$ or shoelace method			
	15	A1	SC2 for 15 with			
10 (i)	$-2\sin 2x$ and $\frac{1}{3}\cos\left(\frac{x}{3}\right)$	B1+B1	each trig function correctly differentiated			
	Attempt at product rule	M1				
	$\frac{1}{3}\cos 2x\cos\left(\frac{x}{3}\right) - 2\sin 2x\sin\left(\frac{x}{3}\right)$ isw	A1ft	ft $k_1 \sin 2x$ and	$k_2 \cos\left(\frac{x}{3}\right)$		
	1		provided k_{1, k_2} are non-zero			
(ii)	$\sec^2 x$ and $\frac{1}{x}$	B1 + B1				
	Attempt at quotient rule (with given quotient) $(\sec^2 x)(1 + \ln x) = \frac{1}{2}(\tan x)$	M1	or rearrangement to correct product and attempt at product rule			
	$\frac{(\sec^2 x)(1 + \ln x) - \frac{1}{x}(\tan x)}{(1 + \ln x)^2}$ isw	A1	penalise poor bracketing if not recovered			

Page 5		Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2014		0606	21
11 (a)) 2^{x^2}	$x^{2}-5x = 2^{-6}$ - 5x + 6 = 0	M1 M1	Or $(x^2 - 5x)\ln 2 = \ln\left(\frac{1}{64}\right) = -6$ their "6"	
	Co	-5x + 6 = 0 rrect method of solution of their 3 term adratic	M1	ineir 0	
	<i>x</i> =	2 or x = 3	A1		
(b)) Co	rrect change of base to $\frac{\log_a 4}{\log_a 2a}$	B1	base <i>a</i> only at th recover at end	is stage but can
	108	$\frac{\log_a 4}{\operatorname{g}_a 2 + \log_a a}$	M1	for $\log 2a = \log 2a$	$2 + \log a$
	-	$g_a a = 1$ used soi applification to $\log_a 4$	M1 A1		

Page 6	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2014		0606	21
			T	
12 (i)	$f(3) = \frac{6}{4} oe$	M1 A1	or $fg(x) = \frac{2\sqrt{(x+1)}}{\sqrt{(x+1)+1}}$ allow omission of 2() in numerator or () + 1 in denominator, but not both.	
(ii)	$\frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1}+1}$	M1		
	A correct and valid step in simplification	dM1	e.g. multiplying numerator and denominator by $x + 1$, or	
			simplifying $\frac{2}{x+1}$ $\frac{2x+x+1}{x+1}$	$\frac{x}{1} + 1$ to
	Correctly simplified to $\frac{4x}{3x+1}$	A1	A T 1	
(iii)	Putting $y = g(x)$, changing subject to x and swopping x and y or vice versa	M1	condone $x = y^2 - 1$; reasonable attempt at correct method	
	$g^{-1}(x) = x^2 - 1$	A1	condone $y = \dots$, $f^{-1} = \dots$
	(Domain) $x > 0$ (Range) $g^{-1}(x) > -1$	B1 B1	condone $y > -1$	$f^{-1} > -1$
(iv)	y x	B1 + B1	correct graphs; - labelled but cou 'one square'	-1 need not be ld be implied by
	-1 0 -1	B1	idea of reflectio line $y = x$ must b	n or symmetry in be stated.